Abstract
Degradable and non-degradable biomaterials are two categories that can be used to classify the existing biomaterials, being a solution for eliminating a second surgical intervention of the implant when the tissue has properly recovered. In the present paper, the effect of deposition temperature on the structure, morphology, hardness, electrochemical evaluation, degradation properties and functional peptides adhesion of Mg and Si-doped hydroxyapatite was investigated. The coatings were obtained by RF magnetron sputtering technique at room temperature (RT) and 200 °C on AZ31B alloy substrate. Results showed that an increase in deposition temperature led to an improvement in hardness and reduced modulus of about 47%. From an electrochemical point of view, a comparative assessment of corrosion resistance was made as a function of the immersion medium used, highlighting the superior behaviour revealed by the coating deposited at elevated temperature when immersed in DMEM medium (icorr~12 µA/cm2, Rcoat = 705 Ω cm2, Rct = 7624 Ω cm2). By increasing the deposition temperature up to 200 °C, the degradation rate of the coatings was slowed, more visible in the case of DMEM, which had a less aggressive effect after 14 days of immersion. Both deposition temperatures are equally suitable for further bio-inspired coating with a mussel-derived peptide, to facilitate biointegration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.