Abstract

The effect of the deposition parameters and Ge content on the stress gradient in poly-SiGe films was investigated. The films, ranging in thickness from 1.2 to 2.3 μm, were deposited by chemical vapor deposition (CVD) at 450 °C and plasma enhanced chemical vapor deposition (PECVD) at 520 °C. The Ge content was varied between 45 and 64 at%. X-ray diffraction revealed that both PECVD and CVD films were polycrystalline. The stress gradient was determined by measuring the deflection of 1 mm long released cantilevers. The stress gradient was found to decrease with increasing Ge content. A CVD film with 55 at% Ge was thinned using a very low power SF 6 /O 2 plasma. The stress gradient was measured as a function of film thickness. The stress profile was calculated by matching the bending moment of the calculated profile to the bending moment obtained from the measured stress gradient. The largest change in stress occurs right at the thin film/substrate interface. PECVD films were found to possess a lower stress gradient compared to CVD films with similar thickness. This was explained by differences in TEM microstructure: CVD films have more V-shaped grains, while PECVD films have more columnar grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.