Abstract

Welding-based additive manufacturing can potentially produce a cost-effective process for the production of dense metallic parts. Tungsten inert gas (TIG) welding-based additive manufacturing process uses wire as a filler material and offers a high deposition rate with low spattering. In this study, different orientations of wire feeding nozzle and TIG welding torch, such as front wire feeding (FWF), back wire feeding (BWF), and side wire feeding (SWF), were investigated for thin-walled metal deposition with enhanced dimensional accuracy and mechanical properties. The dimensional accuracy of thin-walls deposited at four different orientations were investigated in terms of deposition height and deposition width. The FWF orientation with higher wire feeding angle and SWF orientation produced poor dimensional accuracy in the deposition. FWF orientation with normal wire feeding angle and BWF orientation provided a decent dimensional accuracy and surface appearance. The deposited samples exhibited a similar trend for Vickers microhardness, residual stress, and microstructure for the four different wire feeding orientations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call