Abstract
Cobalt-Based alloys are largely applied to the surface of components as welded coatings. Carbides reinforced CoCrWC system is used to extend the service life under harsh environments involving wear and corrosion in different media. This work aims to evaluate the effect of deposition current on the microstructure and properties of PTA coatings. So, CoCrWC alloy (Stellite #6) was processed on AISI316L stainless steel plates with the following main arc current: 100, 120, 150, 180 and 200A. So, different interaction with the substrate must be expected and its effect on coatings features was evaluated. The geometry of single track coatings, dilution, formed phases and phase volume fraction was assessed by laser Confocal, scanning electron microscopy and X-ray diffraction analysis. Vickers hardness and wear tests were carried out to correlate microstructure to properties of coatings. Coatings showed microstructure composed by hypoeutectic dendrites of Cobalt solid solution and interdendrictic carbides. Dilution increased with deposition current from 11,8 e 56,5% which reduced the carbides fraction and increased the Cobalt solid solution areas, resulting in hardness decrease from 500 to 310HV0,5. Higher deposition current induced mass loss rate increase on pin-on-disc sliding wear tests, arising 44,38% increment on wear coefficient, as a consequence of the lower carbides fraction and solid solution alloying and refinement degree of the microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.