Abstract

Depolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicus Selenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor VIIa by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor VIIa inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitro activity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.