Abstract
Viral hepatitis C is a dangerous, widespread human disease. The choice of drugs for treatment of chronic hepatitis C virus (HCV) infection is limited, and prophylactic vaccines do not exist. Thus, the development of new antiviral strategies and substances is an issue of great importance. The targeting of viral morphogenesis might be used as an alternative approach to existing strategies of HCV blocking. The glycosylation of viral envelope proteins is an important step of viral particle morphogenesis, which determines the correct assembly of HCV virions. Derivatives of a glucose analog deoxynojirimycin (DNJ) act as an α-glucosidase inhibitor and can impair the assembly of structural proteins and HCV particle formation. In the present work, the effects of alkylated DNJ derivatives, N-pentyl-DNJ and N-benzyl-DNJ, on HCV morphogenesis were studied in a model system of insect cells that produce three viral structural proteins with the formation of virus-like particles. It was shown that DNJ derivatives impair the intracellular N-glycosylation of HCV envelope glycoproteins. At the concentration of 1 mM, these substances cause an increase in the levels of gpE1 and gpE2 glycoproteins and a decrease in their electrophoretic mobility, apparently due to the inhibition of α-glucosidase in the endoplasmic reticulum and the accumulation of hyperglycosylated N-glycans in HCV glycoproteins. The interaction of the latter with calnexin results in the formation of unproductive dimers and blocks the productive assembly of virus-like particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.