Abstract

Chemical disinfectants are usually associated with mechanical methods to remove stains and reduce biofilm formation. This study evaluated the effect of disinfectants on release of metal ions and surface roughness of commercially pure titanium, metal alloys, and heat-polymerized acrylic resin, simulating 180 immersion trials. Disk-shaped specimens were fabricated with commercially pure titanium (Tritan), nickel-chromium-molybdenum-titanium (Vi-Star), nickel-chromium (Fit Cast-SB Plus), and nickel-chromium-beryllium (Fit Cast-V) alloys. Each cast disk was invested in the flasks, incorporating the metal disk to the heat-polymerized acrylic resin. The specimens (n=5) were immersed in these solutions: sodium hypochlorite 0.05%, Periogard, Cepacol, Corega Tabs, Medical Interporous, and Polident. Deionized water was used as a control. The quantitative analysis of metal ion release was performed using inductively coupled plasma mass spectrometry (ELAN DRC II). A surface analyzer (Surftest SJ-201P) was used to measure the surface roughness (µm). Data were recorded before and after the immersions and evaluated by two-way ANOVA and Tukey's test (α=0.05). The nickel release proved most significant with the Vi-Star and Fit Cast-V alloys after immersion in Medical Interporous. There was a significant difference in surface roughness of the resin (p=0.011) after immersion. Cepacol caused significantly higher resin roughness. The immersion products had no influence on metal roughness (p=0.388). It could be concluded that the tested alloys can be considered safe for removable denture fabrication, but disinfectant solutions as Cepacol and Medical Interporous tablet for daily denture immersion should be used with caution because it caused greater resin surface roughness and greater ion release, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.