Abstract

This study aimed to evaluate the influence of different dental tissue thickness on the measurement of oxygen saturation (SpO2) levels in high (HP) and low (LP) blood perfusion by comparing the values obtained from two different pulse oximeters (POs) - BCI and Sense 10. Thirty freshly extracted human teeth had their crowns interposed between the POs and an optical simulator, which emulated the SpO2 and heart beats per minute (bpm) at HP (100% SpO2/75 bpm) and LP (86% SpO2/75 bpm) modes. Afterwards, the palatine/lingual surfaces of the dental crowns were worn with diamond drills. The reading of SpO2 was performed again using the POs alternately through the buccal surface of each dental crown. Data were analyzed by the Wilcoxon, Mann-Whitney and Kendall Tau-b tests (α=5%). The results showed significant difference at the HP and LP modes in the SpO2 readouts through the different dental thicknesses with the use of BCI, and at the LP mode with the use of Sense 10, which had a significant linear correlation (p<0.0001) and lower SpO2 readout values in relation to the increase of the dental thickness. Irrespective of tooth thickness, Sense 10 had significantly higher readout values (p<0.0001) than BCI at both perfusion modes. The interposition of different thicknesses of enamel and dentin influenced the POs measurement of SpO2, specially at the low perfusion mode. The POs were more accurate in SpO2 measurement when simulated perfusion levels were higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.