Abstract

Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR). The mechanical behaviour was compared with the same lattice structures having constant density ratio. Electron Beam Melting technology was used to manufacture titanium alloy specimens with global relative densities from 10% to 30%. Functionally graded structures were obtained by increasing the relative density along the specimen, by individually designing the lattice's layers. Scanning electron and a digital microscopy were used to evaluate the dimensional mismatch between actual and designed structures. Compressive tests were carried out to obtain the mechanical properties and to evaluate the collapse modes of the structures in relation to their average relative density and lattice grading. Open-source Digital Image Correlation algorithm was applied to evaluate the deformation behaviour of the structures and to calculate their elastic moduli. The results showed that uniform density structures provide higher mechanical properties than functionally graded ones. The Digital Image Correlation results showed the possibility of effectively designing the different layers of functionally graded structures selecting desired local mechanical properties to mimic the different characteristics of cortical and cancellous bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.