Abstract
Hyperspectral images are widely used for land use/cover analysis in remote sensing due to their rich spectral information. However, these data often suffer from noise caused by various factors such as random and systematic errors, making them less useful for end-users. In this study, denoising methods (i.e., DnCNN, NGM, CSF, BM3D, and Wiener) for hyperspectral images were compared using the Pavia University hyperspectral dataset with four different noise types: Gaussian, Salt & Pepper, Poisson, and Speckle. After denoising, the k-nearest neighbor method was used to classify the image, and statistical and visual performance comparisons were performed on the classified data. Six performance metrics -Accuracy, Sensitivity, Specificity, Precision, F-Score, and G-Mean- were employed to compare the outcomes qualitatively. The findings demonstrate that DnCNN and BM3D have the best outcome performance for all four noise types. Due to their lack of sensitivity and specificity, the CSF and Wiener approaches had low performance for particular noise sources. For all noise types, the NGM approach had the worst results. The validated instruments not provide effective results when it came to denoising Salt & Pepper noise, but they managed to produce outstanding results when it came to denoising Poisson noise. In order to enhance the quality and usability of hyperspectral images for land use/cover analysis, this study emphasizes the significance of choosing an effective denoising technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.