Abstract

Application of an inappropriate Digital Elevation Model (DEM) might lead to uncertainty in modelling of the hydrological cycle. The novelty of this work is the development of a comprehensive framework to evaluate the effect of DEM resolution (12 to 500 m), source (TanDEM-X, SRTM, AW3D30 and ASTER GDEM2), resampling technique (nearest neighbour, bilinear interpolation, cubic convolution and majority) and area threshold (1000 to 50,000 ha) on Soil and Water Assessment Tool (SWAT) outputs based on five criteria: (1) river network extraction, (2) streamflow simulation, (3) topography, slope and basin characteristics, (4) hydrological and (5) water quality simulations. Kelantan River Basin, a tropical basin in Peninsular Malaysia was selected as study area. The major findings are summarized as follows: (1) TanDEM-X had better river network extraction capability than ASTER GDEM2, (2) better monthly streamflow simulations were obtained between 20 m and 60 m DEM resolutions, with the smallest area threshold (1000 ha), (3) TanDEM-X and SRTM DEMs outperformed ASTER GDEM2 on monthly streamflow simulation, (4) DEM resolution, source and resampling technique were insensitive to most of the hydrological components, except the lateral flow, (5) area threshold was sensitive to SWAT-simulated surface runoff, soil water content and evapotranspiration, (6) DEM scenarios had a larger impact on sediment yield simulations compared to the total nitrogen and total phosphorus simulations. We recommend a preliminary assessment of DEM uncertainties on SWAT outputs to obtain more reliable modelling outputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call