Abstract

The effect of deformation temperature on microstructure evolution during equal channel angular pressing (ECAP) was studied in a coarse-grained aluminum alloy 2219 in a wide temperature interval from 250 to 475 °C. The structural changes taking place during ECAP up to strains of 12 are classified into the following three stages irrespective of deformation temperatures: i.e. (1) an incubation period for formation of the embryos of deformation bands (DBs) at low strains; (2) development of large-scale DBs followed by grain fragmentation at moderate strains; (3) rapid development of new grain at high strains. Microstructure development in stages 1 and 2 is hardly influenced by temperature, while that in stage 3 is most significantly affected at higher temperature. An increase in the pressing temperature leads to decreasing the volume fraction of new grains and increasing the average grain size in stage 3. This can be attributed to relaxation of strain compatibility between grains due to frequent operation of dynamic recovery and grain boundary sliding at higher temperature. The mechanism of grain refinement is discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call