Abstract

Isothermal compression tests were carried out on plain C, Mo, and Mo−Nb−V microalloyed steels in order to study the effect of austenite deformation on the ferrite nucleation and growth rates. The nucleation rate increases with deformation and the degree of supersaturation, Ae3−T; it appears to be reduced by the substitutional elements Mo, Nb, and V through reduction of the austenite grain boundary energy. The growth rate increases with the degree of supersaturation and is also reduced by these elements, apparently through the solute drag-like effect. Under static conditions, increasing the prestraining strain rate increases the nucleation rate, but this increase is small compared to the effect of concurrent deformation. The growth rate under static conditions decreases as the deformation or the strain rate is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.