Abstract
In this paper, nanoscale mechanical properties and failure behavior of graphene with Stone-Wales defect concentration were investigated using molecular dynamics simulations with the latest ReaxFFC-2013 potential that can accurately capture bond breakages of graphitic compounds. The choice of interatomic potential plays an essential role in capturing the deformation mechanism accurately. Stable configuration of two-dimensional graphene experiences out-of-plane deformation leading to ripples and wrinkles in graphene. It is observed that the mechanical properties such as Young’s modulus, ultimate tensile strength, and the fracture strain are dependent on the out-of-plane deformation, temperature, defect concentration, defect orientation, defect layout and loading configuration. It is observed that the post transient phase non-homogenous ripples and wrinkles influence the mechanical properties at low and high defect concentrations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.