Abstract
Objective To evaluate the effect of a deep learning reconstruction (DLR) method on the visibility of contrast-enhanced CT images of the biliary system by comparing it with different iterative reconstruction algorithms including the adaptive iterative dose reduction 3D (AIDR 3D) algorithm,forward projected model based iterative reconstruction solution (FIRST),and filtered back projection (FBP) algorithm. Methods A total of 30 patients subjected to abdominal contrast-enhanced CT and diagnosed with dilatation of common bile duct or extrahepatic bile duct were retrospectively included in this study.The images of the portal phase were reconstructed via four different algorithms (FBP,AIDR 3D,FIRST,and DLR).Signal to noise ratio (SNR) and contrast to noise ratio (CNR) of the dilated bile duct,liver parenchyma,measurable bile duct lesions,and image noise were compared between the four datasets.In subjective analyses,two radiologists independently scored the image quality (best:4 points,second:3 points;third:2 points;fourth:1 point) of the four datasets based on the noise and image visual quality of the biliary system.The Friedman and the Bonferroni-Dunn post-hoc tests were performed for comparison. Results The DLR images (bile duct:4.42±0.87;liver parenchyma:3.78±1.47) yielded higher CNR than the FBP (bile duct:2.21±1.02,P<0.001;liver parenchyma:1.43±1.29,P<0.001),AIDR 3D (bile duct:2.81±0.91,P=0.024;liver parenchyma:2.39±1.94,P=0.278),and FIRST (bile duct:2.51±1.24,P<0.001;liver parenchyma:2.45±1.81,P=0.003) images.Furthermore,the DLR images had higher SNR (bile duct:1.39±0.85,liver parenchyma:9.75±1.90) than the FBP (bile duct:0.86±0.63,P<0.001;liver parenchyma:3.31±1.12,P<0.001) and FIRST (bile duct:1.01±0.61,P=0.013;liver parenchyma:5.73±1.37,P<0.001) images,and showed lower noise (10.51±3.53) than the FBP(4.10±3.92,P<0.001),AIDR 3D (15.72±2.41,P=0.032),and FIRST (17.20±3.82,P<0.001) images.SNR and CNR showed no significant differences between FIRST and AIDR 3D images (all P>0.05).DLR images [4(4,4)] obtained higher score than FPB [1(1,1),P<0.001],AIDR3D[3 (2,3),P=0.029],and FIRST[2 (2,3),P<0.001] images. Conclusion DLR algorithm improved the subjective and objective quality of the contrast-enhanced CT image of the biliary system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.