Abstract
We numerically investigate soliton self-compression in the higher-order modes of a gas-filled capillary with decreasing pressure. We demonstrate four times enhancement in the compression with the decreasing pressure compared to the equivalent constant pressure case in the HE12 mode, reaching sub-cycle duration of 1.85 fs at its output. Moreover, the negative pressure gradient effectively suppresses the intermodal coupling in the later stage of the compressor, which helps to maintain high output mode purity. These findings are of direct benefit for applications that require ultrashort light pulses in unconventional spatial beam profiles, including in nonlinear frequency conversion, microscopy, micromachining, and particle manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.