Abstract

High-quality-factor 3D cavities in superconducting circuits are ideal candidates for bosonic logical qubits as their fidelity is limited only by the low photon loss rate. However, the transmon qubits that are used to manipulate bosonic qubits result in the emergence of additional relaxation and dephasing channels. In this work, a numerical study is performed to elucidate the effect of the various loss channels on the performance of logical gates on a bosonic qubit. A gate error model is developed that encapsulates the loss mechanisms for arbitrary gate operations and predicts experimentally achievable gate errors for bosonic qubits. The insights gleaned from this study into loss mechanisms suggest more efficient optimization algorithms that could reduce gate errors on bosonic qubits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.