Abstract
The influence of dechlorinating microorganisms on PCE and its reduced end products in the presence of a PCE-containing nonaqueous phase liquid (NAPL) was investigated. Experiments were conducted in continuous-flow stirred-tank reactors (CFSTRs) containing a mixed PCE dechlorinating culture and a model NAPL consisting of PCE and tridecane. Comparisons between biotic and abiotic CFSTRs demonstrated that dechlorination resulted in a factor of 14 increase in PCE removal rates from the NAPL. The formation of dechlorination daughter products trichloroethene and cis-dichloroethene were observed, and cis-dichloroethene was not dechlorinated further. Partitioning of daughter products between phases caused temporal changes in the chlorinated ethenes distribution within the NAPL. The combined effects of dissolution and dechlorination on the removal of chlorinated ethenes from the NAPL were described using a mathematical model that approximated dechlorination as a pseudo-first-order process. Pseudo-first-order dechlorination rate coefficients for PCE and TCE were determined and were 0.18 and 0.27 h-1, respectively. It was determined that total chlorinated ethenes removal from the NAPL would be achieved in 13 days in biotic CFSTRs, as compared to 77 days in the abiotic CFSTRscorresponding to an 83% reduction in longevity of the chlorinated ethenes component of the NAPL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.