Abstract

Hydrogenated amorphous silicon nitride (a-SiN:H) films were deposited on flexible polyethylene terephthalate substrates at temperature as low as 100 °C by hot-wire chemical vapor deposition using SiH 4, H 2 and NH 3 precursors. Field emission scanning emission microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and small angle X-ray scattering were employed to study structural and microstructural properties of a-SiN:H films. The rms surface roughness increased with increase of positive bias to substrate. Intermediate range order, porosity and interface inhomogeneity in amorphous of a-SiN:H films evaluated by acoustic and optical phonon of silicon network, Guinier plot and correlated length from Raman and SAXS characterizations. The fractal behavior of a-SiN:H domains approached the perfect symmetry and the intermediate range order of a-SiN:H films deteriorate with increase of the positive substrate bias. Both correlation length and void size of the a-SiN:H amorphous domain increased with increase of the substrate bias from 0 to +200 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.