Abstract

The purpose of this study was to investigate the possibility that oxidative stress was involved in danofloxacin-induced toxicity in renal tubular cells epithelial cell line (LLC-PK1). Confluent LLC-PK1 cells were incubated with various concentrations of danofloxacin. The extent of oxidative damage was assessed by measuring the reactive oxygen species (ROS) level, lipid peroxidation, cell apoptosis and antioxidative enzyme activities. Danofloxacin induced a concentration-dependent increase in the ROS production, not even cytotoxic conditions. Similarly, danofloxacin caused an about 4 times increase in the level of thiobarbituric acid reactive substances at the concentration of 400μM for 24hr, but it did not induce cytotoxicity and apoptosis. Antioxidant enzymes activities, such as superoxide dismutase (SOD) and catalase (CAT), were increased after treatment with 100, 200 and 400μM of danofloxacin for 24hr. The activity of glutathione peroxidase (GPX) was significantly decreased in a concentration-dependent manner. In addition, ROS production, lipid peroxidation and GPX decline were inhibited by additional glutathione and N-acetyl cysteine. These data suggested that danofloxacin could not induce oxidative stress in LLC-PK1 cells at the concentration (≤400μM) for 24hr. The increase levels of ROS and lipid peroxidation could be partly abated by the increase activities of SOD and CAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call