Abstract
This study addresses the modeling of different energy dissipation mechanisms for numerical prediction of the vertical acceleration demand in regular moment-resisting steel frame structures. One of the issues discussed is the consideration of viscous damping in the structural model. It is shown that well-established Rayleigh-damping may highly overestimate the damping of the vertical modes, resulting in much too low vertical acceleration response predictions. A study with different damping models provides an appropriate damping modeling strategy that leads to reasonable predictions of both horizontal and vertical frame acceleration demands. Another open question is the effect of inelastic material behavior on the vertical acceleration demand on the considered regular structures. The results of a shell model of a frame structure exposed to high intensity ground motion excitation demonstrate that inelastic material behavior has virtually no impact on the vertical acceleration demand, while structural inelasticity leaves the horizontal acceleration response significantly smaller compared to the elastic demand. This leads to the conclusion that common frame models that capture the inelastic horizontal response but behave elastic in the vertical direction are suitable for the computation of both the horizontal and vertical acceleration demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.