Abstract

Whey protein isolate (WPI) bar hardening without and with cysteine (Cys) or N-ethylmaleimide (NEM) was investigated in model systems (WPI/buffer = 6:4, by weight, pH 6.8, a(w) approximately 0.97) in an accelerated shelf-life test (ASLT) at 45 degrees C over a period of up to 35 days. The formation of insoluble aggregates as determined by solubility and the structural rearrangement of WPI protein aggregates as observed by SEM were responsible for the WPI bars' hardening. As corroborated by electrophoresis analysis, both beta-lactoglobulin (beta-lg) and alpha-lactalbumin (alpha-la) were involved in the formation of aggregates via the thiol-disulfide interchange reaction and/or noncovalent interactions. The former force dominated the bar hardening at an earlier stage, whereas the latter force played a role for the long-term hardening. In comparison with the control bar without Cys, the thiol-disulfide interchange reaction was significantly reduced by Cys (WPI/Cys = 0.05), increased by Cys (WPI/Cys = 0.25), and inhibited by NEM (WPI/NEM = 2). Therefore, bar hardening was significantly delayed by Cys (WPI/Cys = 0.05) and NEM but accelerated by Cys (WPI/Cys = 0.25).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.