Abstract

The kinetics of the photocyclization of diphenylamine (DPA) to carbazole (CAZL) has been studied fluorometrically in air-equilibrated aqueous solution as well as in constrained microheterogeneous media provided by α-, β-, and γ- cyclodextrins (CDs). It is observed that the fluorophore is embedded within the CD cavities without any alteration of the overall reaction quantum yield in the different environments. However, the rate of the photoreaction is modified remarkably within the CD environments. A restriction on the intramolecular rotation of the phenyl planes of DPA, imposed by the steric rigidity within the CD cavities, has been ascribed to be responsible for the suppression of the reaction rates within the CD environments. A semi-empirical (AM1) calculation gives the molecular dimension of the substrate and corroborates the proposition from a consideration of the cavity size of the different cyclodextrins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.