Abstract

Endothelial progenitor cells (EPCs) have been used as an autologous or allogeneic source in multiple tissue engineering applications. EPCs possess high proliferative and tissue regeneration potential. The effect of shear stress on EPCs has been extensively studied but the role of cyclic mechanical strain on EPCs remains to be understood. In this study, we focused on examining the role of uniaxial cyclic strain on EPCs cultured on three-dimensional (3D) anisotropic composites that mimic healthy and diseased aortic valve tissue matrix compositions. The composites were fabricated by combining centrifugal jet spun fibers with photocrosslinkable gelatin and glycosaminoglycan hydrogels. A custom-designed uniaxial cyclic stretcher was used to provide the necessary cyclic stimulation to the EPC-seeded 3D composites. The samples were cyclically strained at a rate of 1Hz at 15% strain mimicking the physiological condition experienced by aortic valve, with static conditions serving as controls. Cell viability was high in all conditions. Immunostaining revealed reduced endothelial marker (CD31) expression with increased smooth muscle cell marker, SM22α, expression when subjected to cyclic strain. Functional analysis through Matrigel assay agreed with the immunostaining findings with reduced tubular structure formation in strained conditions compared to EPC controls. Additionally, the cells showed reduced acLDL uptake compared to controls which are in alignment with the EPCs undergoing differentiation. Overall, we show that EPCs lose their endothelial progenitor phenotype, and have the potential to be differentiated into mesenchymal-like cells through cyclic mechanical stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.