Abstract

To explore the effect of cyclic pre-deformation on static mechanical behavior of materials with different stacking fault energies (SFEs), polycrystalline Cu-16 at. pct Al alloy with a low SFE is selected as the target material in the present work, and the strengthening micro-mechanisms induced by cyclic pre-deformation are compared with the previous studies on pure Al with a high SFE and Cu with an intermediate SFE. The results show that the movement of dislocations exhibits a high slip planarity during cyclic pre-deformation at different total strain amplitudes Δet/2, and some nano-sized deformation twins are formed after subsequent tension. The cyclic pre-deformation at an appropriate Δet/2 of 1.0 × 10−3 promotes a significant increase in ultimate tensile strength σUTS nearly without loss of tensile ductility, which primarily stems from the introduction of many mobile planar slip dislocations by cyclic pre-deformation as well as the formation of nano-sized deformation twins during subsequent tension. Based on the comparison of the strengthening micro-mechanisms induced by cyclic pre-deformation in Al, Cu, and Cu-16 at. pct Al alloy, it is deduced that a low-cycle cyclic pre-deformation at an appropriate condition is expected to cause a better strengthening effect on the static tensile properties of low SFE metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.