Abstract

We evaluated the effects of mechanical stimulation on the osteogenic differentiation of human intraoral mesenchymal stem and progenitor cells (MSPCs) using the Flexcell FX5K Tension System that mediated cyclic tensile stretch on the cells. MSPCs were isolated from human mandibular retromolar bones and characterized using flow cytometry. The positive expression of CD73, CD90, and CD105 and negativity for CD14, CD19, CD34, CD45, and HLA-DR confirmed the MSPC phenotype. Mean MSPC doubling time was 30.4 ± 2.1 hrs. The percentage of lactate dehydrogenase (LDH) release showed no significant difference between the mechanically stimulated groups and the unstimulated controls. Reverse transcription quantitative real-time PCR revealed that 10% continuous cyclic strain (0.5 Hz) for 7 and 14 days induced a significant increase in the mRNA expression of the osteogenesis-specific markers type-I collagen (Col1A1), osteonectin (SPARC), bone morphogenetic protein 2 (BMP2), osteopontin (SPP1), and osteocalcin (BGLAP) in osteogenic differentiated MSPCs. Furthermore, mechanically stimulated groups produced significantly higher amounts of calcium deposited into the cultures and alkaline phosphatase (ALP). These results will contribute to a better understanding of strain-induced bone remodelling and will form the basis for the correct choice of applied force in oral and maxillofacial surgery.

Highlights

  • Mesenchymal stem and progenitor cells (MSPCs) are promising candidates for cellular therapy in bone repair and regeneration of degenerative diseases due to their accessibility, expandability, and multipotent differentiation potential [1,2,3,4,5,6]

  • We evaluated the effects of mechanical stimulation on the osteogenic differentiation of human intraoral mesenchymal stem and progenitor cells (MSPCs) using the Flexcell FX5K Tension System that mediated cyclic tensile stretch on the cells

  • Reverse transcription quantitative real-time PCR revealed that 10% continuous cyclic strain (0.5 Hz) for 7 and 14 days induced a significant increase in the mRNA expression of the osteogenesisspecific markers type-I collagen (Col1A1), osteonectin (SPARC), bone morphogenetic protein 2 (BMP2), osteopontin (SPP1), and osteocalcin (BGLAP) in osteogenic differentiated MSPCs

Read more

Summary

Introduction

Mesenchymal stem and progenitor cells (MSPCs) are promising candidates for cellular therapy in bone repair and regeneration of degenerative diseases due to their accessibility, expandability, and multipotent differentiation potential [1,2,3,4,5,6]. Bone marrow (BM) is regarded as the main source of MSPCs for experimental and clinical application [6], but due to the limited number of BM-MSPCs available for autogenous use, the implementation of alternative sources of MSPCs is important. Various techniques using mainly autogenous bone grafts alone or in combination with bone substitutes have, with varying degrees of success and with limitations mainly in regard to donor site morbidity, been introduced and established in daily practice [8,9,10].

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call