Abstract

When inducing simultaneously beta-galactosidase and tryptophanase in a batch culture either the synthesis of tryptophanase or of both enzymes is decreased due to an insufficient cAMP concentration. The addition of this nucleotide can overcome this decrease. In a continuous culture both enzymes are synthesized at the maximum rate, as the amount of cAMP produced during carbon limitation of growth is probably sufficient for the simultaneous synthesis of both enzymes. In the beta-galactosidase hyperproduction mutant cultivated continuously the level of beta-galactosidase markedly decreases when tryptophanase is simultaneously induced. Also this decrease is caused by cAMP insufficiency and can be overcome by increasing its concentration. cAMP is thus an important regulatory factor of both enzymes and becomes a limiting factor in their simultaneous synthesis; a competition for this regulatory compound apparently occurs and probably also a different mutual affinity of the regulatory complex with the promoter site of the enzyme operons is involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.