Abstract

Fe2O3 thin films were deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates at different cycle numbers to investigate structural, linear and nonlinear optical properties. X-Ray Diffraction (XRD) analysis revealed that the Fe2O3 thin films have a non-crystalline nature. The morphological properties of the films were investigated by Field Emission-Scanning Electron Microscopy (FE-SEM) and the results show that the films’ surfaces are porous. The linear and nonlinear optical parameters were evaluated and analyzed by using transmittance and absorbance measurements. For these measurements, UV–Vis spectroscopy at room temperature was used. The refractive index values were calculated in the range of 1.45–3.23 for visible region (400–700 nm). Obtained results reveal that direct optical band gap changed between 2.62 and 2.68 eV and indirect optical band gap changed between 1.67 and 1.77 eV. Additionally, optical electronegativity, optical dielectric constants, surface and volume energy loss functions, nonlinear refractive index, linear optical susceptibility, third-order nonlinear optical susceptibility, optical and electrical conductivity, and loss tangent values were calculated and discussed in detail. It was found that each parameter studied is dependent on the cycle numbers. Also, it can be stated that Fe2O3 thin films are promising candidate for solar cells and optoelectronic device technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.