Abstract
Oxidation kinetics of platinum modified aluminide and overlay coatings on nickel base superalloys were investigated. Isothermal oxidation tests were carried out at 1050°C in synthetic air. Cyclic oxidation tests were performed with 2 cycle frequencies : - Short term cycles : 1h dwells at 1050°C in synthetic air ×1800 cycles - Long term cycles : 300h dwells at 1050°C in laboratory air × 6 cycles (experiment planned to totalize at least 10 000 hours at high temperature) The mass gain curves point out a large effect of the cycle frequency at 1050°C for overlay NiCoCrAlYTa coating whereas the effect is less significant for Pt-modified nickel aluminide coating. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy was used to evaluate the effect of cycle frequency on microstructural evolution. A simple statistical spalling model [1,2], assuming that the parabolic rate constant kp and the spalling probability p are constant, is tentatively applied and discussed in view of the microstructural evolution complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.