Abstract

BackgroundDietary yeast inclusions in a pig diet may drive changes both in gut bacterial composition and bacterial functional profile. This study investigated the effect of Cyberlindnera jadinii as a protein to replace 40% of the conventional proteins in a diet for weanling pigs on the microbiota in the small and large intestine, colonic short-chain fatty acid concentration, and colonic histopathology parameters. Seventy-two pigs weaned at 28 days of age were randomly assigned to either a control or a C. jadinii-based diet and followed for 2 weeks.ResultsCompared with the controls, higher numbers of cultivable lactic acid-producing bacteria in the small and large intestine were registered in the yeast group. Alpha and beta bacterial diversity were different between the diet groups with lower alpha-diversity and distinct bacterial composition in the large intestine in the yeast group compared with those of the controls. The large intestine microbiota in the yeast group had higher numbers of Prevotella, Mitsuokella and Selenomonas compared with those of the controls. The concentrations of colonic acetate and butyrate were higher in the controls compared with that of the yeast group. The colonic crypt depth was deeper in the control group. The gut histopathology of colonic tissues revealed no differences between the diets.The colonic crypt depth tended to be deeper with higher relative abundance of an unclassified Spirochetes, higher colonic butyrate concentration, and higher bacterial richness. The concentration of colonic butyrate was positively associated with the relative abundance of the Faecalibacterium prausnitzii, Dialister, and an unclassified amplicon of the Spirochaetaceae family in the colon.ConclusionsThe replacement of the conventional proteins by proteins from Cyberlindnera jadinii in a weanling pig diet reshaped the large intestine microbiota structure. The novel yeast diet appeared to be selective for Lactobacillus spp., which may represent an added value resulting from using the sustainably produced yeast protein ingredient as an alternative to conventional protein ingredients in animal diets. The large intestine bacterial composition and their metabolites may be involved in an adaptive alteration of the colonic crypts without pathological consequences.

Highlights

  • Up to 70% of globally produced soy is used to maintain livestock production [1]

  • lactic acid bacteria (LAB) were found in higher numbers on average in the yeast group (9.57 logCFU/g) compared with the controls (7.30 logCFU/g) at day 4 PW (p < 0.001) (Additional file 1)

  • We investigated the effect of a high level Cyberlindnera jadinii yeast diet on the gut bacterial compositions in weanling piglets

Read more

Summary

Introduction

Up to 70% of globally produced soy is used to maintain livestock production [1]. Sustainable protein alternatives are needed to reduce the dependency on soy and other conventional proteins as ingredients in the feed for animal husbandry. A number of studies have investigated the effect of yeast supplementation on pig microbiota composition. Nakashimada et al studied changes in pig faecal bacterial composition using an in vitro intestinal model These investigators found lower numbers of Faecalibacterium in the reactor system with addition of yeast cell wall components than without [11]. While supplementation of yeast ingredients does seem to promote distinct intestinal bacterial groups, the reduction in short-chain fatty acid (SCFA) producing bacteria may be another intrinsic feature of such diets. This study investigated the effect of Cyberlindnera jadinii as a protein to replace 40% of the conventional proteins in a diet for weanling pigs on the microbiota in the small and large intestine, colonic short-chain fatty acid concentration, and colonic histopathology parameters. Seventy-two pigs weaned at 28 days of age were randomly assigned to either a control or a C. jadinii-based diet and followed for 2 weeks

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.