Abstract

To achieve durability of the embankment in southern China, a method to control the change of moisture content with the cushion and cover was proposed. A finite element model of cushion and cover considering different materials and thicknesses for a typical embankment was built, and 20 numerical analyses of transient seepage in the embankment were simulated. The results show that the sand cushion effectively blocks the effect of groundwater capillary rise and the minimum thickness of the sand cushion is 75 cm without considering the atmospheric environment. With the combination of sand cushion and clay cover, as the thickness of the clay cover increases, the duration time of the moisture content from the initial to relative equilibrium state increases, but the equilibrium moisture content is the same as that of the original embankment. Besides, with the combination of the sand cushion and sand cover, the moisture content inside the embankment remains the same, which is consistent with the optimum moisture content during construction. The combination of 75 cm sand cushion and 30 cm sand cover is a very effective method to block groundwater and atmospheric environment, and achieve the control of the humidity stability of the embankment in southern China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call