Abstract

The effect of curvature on the chemical shielding of carbons in curved polycyclic aromatic hydrocarbons has been systematically studied by examining structures analogous to the circumcoronene molecule with different degrees of curvature. We attempt to eliminate effects from Knight shifts in carbon nanotubes, differing ring currents from five-membered rings, and edge effects in finite nanotube models in order to separate out the change in shielding that is due to curvature alone. Using curved structures derived from geometry-optimized structures of carbon nanotubes, we calculate the carbon chemical shielding tensor for carbons in the central aromatic ring as well as the Nucleus Independent Chemical Shift (NICS) on the convex and concave side of each structure. All three tensor components become less shielded with increasing curvature of the system, with the σ33 component radial to the curve experiencing the greatest change. The NICS values are influenced by both the decrease in aromaticity as the structure is curved as well as geometric effects that bring the outside rings closer to the central aromatic ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.