Abstract
The composite (ceramic-metal) coating has become a desired coating due to its higher wear and corrosion behaviour compares to metal coating only. This study focuses on the effect of the deposition parameter which is the current density and bath temperature on the corrosion and wear behaviour of the coating. As the current density and temperature will affect the movement of the electron during deposition, it is important to evaluate its effect on the coating thickness and its wear and corrosion performance. The mild steel was used as the substrate and nickel-tungsten carbide (Ni-WC) as the coating. Watts’s bath was used as an electrolyte with the addition of 25 g/l WC. 0.2 A/cm2 and 0.5 A/cm2 has been chosen as the current density while 30 °C and 50 °C as their temperature. The coating was characterised using a scanning electron microscope (SEM) and x-ray diffractometer (XRD). Immersion test and weight loss test was used to evaluate the corrosion and wear behaviour respectively. The 3 g/l silicon carbide was used as abrasive materials in the wear testing. Vickers micro-hardness tester was used for hardness property evaluation. It is found that higher current density and higher bath temperature results in lower corrosion and wear rate which shows higher resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Physics: Conference Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.