Abstract

One of the key challenges geotechnical engineers face is the failure of embankments due to internal soil erosion. Therefore, soil stabilization against internal erosion becomes necessary to prevent embankment failure. This paper aims to use lime to stabilize sandy soil against internal erosion. Two types of sandy soil (poorly graded and well-graded) were treated with different percentages of lime (based on the dry weight of the soil) and curing times (1 day, 2 days, and 7 days). For poorly graded soil, the different lime percentages used were from 0.0% to 6.0% with an increment of 1% by dry weight of soil. While for well-graded soil, the lime percentages used were 0.0%, 1.0%, 2.0%, and 3.0% by dry weight of soil. The hole erosion test (HET) was utilized to analyze the erosion parameters of the soil samples. Results proved that lime is an effective soil stabilization agent against the internal erosion of sandy soil. Moreover, for optimum stabilization against internal erosion, poorly graded and well-graded sandy soil required about 5.0% and 3.0% of lime, respectively, with a curing time of 2 days. Significant reduction in erosion rate and improvement in the erosion rate index and critical erosion stress were observed at optimum soil stabilization. In addition, the results demonstrated that the curing time increases the erosion rate index and reduces soil erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call