Abstract

The development of the pore structure of geopolymers synthesized from class F fly ash was studied using electron microscopy and porosimetry. Fly-ash-based geopolymer can be classified as a mesoporous aluminosilicate material, with a Si/Al composition varying from 1.51 to 2.24. The Si/Al composition and pore structure of fly-ash-based geopolymer vary depending on the curing temperature and the silicate ratio of the activating solutions (SiO2/M2O, M = Na or K). A higher Si/Al ratio and finer pores are obtained in geopolymers synthesized at higher temperature and silicate ratios. Elevating the curing temperature increases the extent and rate of reaction, shown through an increase in mesopore volume, surface area, and an accelerated setting time. The kinetics appears to be temperature-controlled only before the material is hardened. Very high silicate ratios (SiO2/M2O ≥ 2.0) are also believed to slow the reactions. The pore structure of K-based geopolymer is more susceptible to change in temperature than that...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call