Abstract

This paper reports an investigation in which the performance of slag, fly ash, and silica fume concretes were studied under four different curing regimes. The water-cementitious materials ratio of all the concrete mixtures was kept constant at 0.50, except for the high-volume fly ash concrete mixture, for which the ratio was 0.35. The concrete specimens were subjected to moist curing, curing at room temperature after demoulding, curing at room temperature after two days of moist curing, and curing at 38 °C and 65% relative humidity. The compressive strength was determined at various ages, and the resistance to chloride-ion penetration was measured according to ASTM C 1202 at different ages up to 180 days. Mercury intrusion porosimetry tests were performed on the 28-day old mortar specimens for comparison purposes. The results indicate that the reduction in the moist-curing period results in lower strengths, higher porosity and more permeable concretes. The strength of the concretes containing fly ash or slag appears to be more sensitive to poor curing that the control concrete, with the sensitivity increasing with the increasing amounts of fly ash or slag in the mixtures. The incorporation of slag or silica fume, or high volumes of fly ash in the concrete mixtures, increased the resistance to chloride ions and produced concretes with very low permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.