Abstract

Many state departments of transportation are currently either using high-performance concrete (HPC) or developing new mix proportions for the application of HPC to transportation structures, with emphasis on bridge decks. However, many state engineers have observed that curing methods and conditions in the field affect the behavior of HPC structures. Moreover, little is known about the effect of curing on the long-term durability of HPC. Therefore, it is necessary to understand the behavior of HPC under various curing conditions and durations and the effect of pozzolanic material such as fly ash and silica fume on rapid chloride permeability (RCP). These factors were studied as part of a project for the New Jersey Department of Transportation to develop and implement mix design and technical specifications for HPC transportation structures such as pavements and bridges. Several mixes were tested, and the best mix was selected on the basis of strength and shrinkage test performance. The long-term durability was assessed by tests for RCP, creep, and freeze–thaw behavior. Moreover, the effect on HPC of four curing methods—moist curing, air-dry curing, burlap wrap, and curing compound—was investigated. Moist-cured cylinders performed better than those cured with other methods, and a minimum of 14 days of cure was required for HPC to attain its full strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.