Abstract
While alkali-activated slag (AAS) has emerged as a promising alternative binder in construction engineering, a consensus on the optimal curing condition for this material has not been reached yet. It is well known that AAS can harden at ambient temperatures, but the influence of humidity on its properties remains poorly understood. Herein, we considered five curing conditions with different relative humidities (RH), including ambient/dry condition (RH=55 %), sealed condition (RH=80–95 %), fog condition (RH>95 %), water immersion condition (RH=100 %), and saturated limewater immersion condition (RH=100 %). Various properties have been examined, including flexural and compressive strengths, elastic modulus, shrinkage, pore structure, carbonation resistance, and freeze-thaw resistance of AAS mortars (AASM). Two types of activators, sodium hydroxide and sodium silicate (modulus at 1) solutions were used. The experimental results indicate that drying at early ages is detrimental to almost all the properties investigated. Sealed curing can deliver desirable mechanical properties and durability, but considerable shrinkage. Fog and water curings are highly effective at mitigating early shrinkage in AASM, but the problem of leaching adversely affects its long-term properties. Generally, limewater curing offers limited benefits compared to other high-humidity curing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.