Abstract

Due to the crucial role of gluten network in maintaining the tensile properties of frozen-cooked noodles (FCNs), the underlying mechanism of protective effect of curdlan on FCNs quality during frozen storage was explored from the perspective of aggregation behavior and structure of gluten in this study. The results showed that curdlan weakened the depolymerization behavior of gluten proteins through inhibiting the disruption of disulfide bonds; Curdlan stabilized the secondary structure of gluten proteins by restraining the transformation of compact α-helices to other secondary structures; Atomic force microscope results implied that curdlan inhibited the aggregation of gluten chains; Confocal laser scanning microscopy observation analyzed by AngioTool software indicated that the connectivity and uniformity of gluten network were enhanced because of curdlan. This study may provide more comprehensive theories for the strengthening effect of curdlan on FCNs quality from the perspective of gluten structure and contribute to the quality improvement of FCN in the food technology field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call