Abstract
Nephrotoxicity is a major complication and a dose limiting factor for cisplatin therapy. Recent evidence suggests that inflammation and oxidative stress may contribute to the pathogenesis of cisplatin-induced acute renal failure. Curcumin is claimed to be a potent anti-inflammatory and antioxidant agent. The present study was performed to explore the effect of curcumin against cisplatin-induced experimental nephrotoxicity. Curcumin in the dosages of 15, 30, and 60 mg kg(-1) was administered 2 days before and 3 days after cisplatin administration. Renal injury was assessed by measuring serum creatinine, blood urea nitrogen, creatinine, urea clearance, and serum nitrite levels. Renal oxidative stress was assessed by determining renal malondialdehyde levels, reduced glutathione levels and enzymatic activities of superoxide dismutase and catalase. Systemic inflammation was assessed by tumor necrosis factor-alpha (TNF-alpha) levels. A single dose of cisplatin resulted in marked inflammation (486% rise in TNF-alpha level) and oxidative stress and significantly deranged renal functions as well as renal morphology. The serum TNF-alpha level was markedly reduced in curcumin-treated rats. Curcumin treatment significantly and dose-dependently restored renal function, reduced lipid peroxidation, and enhanced the levels of reduced glutathione and activities of superoxide dismutase and catalase. The present study demonstrates that curcumin has a protective effect on cisplatin-induced experimental nephrotoxicity, and this effect is attributed to its direct anti-inflammatory and strong antioxidant profile. Hence, curcumin has a strong potential to be used as a therapeutic adjuvant in cisplatin nephrotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.