Abstract

The effect of the Cu/Ga ratio on properties of deep-level defects in CuGaSe2 thin films were studied, using photocapacitance methods with two-wavelength excitation. The transient photocapacitance method, using a monochromatic probe light, determined two kinds of defects located at 0.8 eV and 1.5 eV above the valence band, respectively, the positions of which kept almost constant regardless of Cu/Ga ratio. In addition to the probe light, laser light with a wavelength of 1550 nm corresponding to 0.8 eV was then used to study the saturation effect of the deep-level defect at 0.8 eV above the valence band. The results suggest that the defect level at 0.8 eV acts as a recombination center at room temperature, and it becomes more effective in CuGaSe2 films with a lower Cu/Ga ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.