Abstract

In electroplating-based flip-chip technology, the Cu stud and solder deposition processes are two of the most important factors affecting the reliability of solder joints. The growth of Cu-Sn intermetallic compounds (IMC) also plays a critical role. In this paper, the effect of Cu stud surface roughness and microstructures on the reliability of solder joint was studied. The surface roughness of the Cu stud was increased as the Cu electroplating current density increased. The microstructural morphology of the Cu-Sn IMC layer was affected by Cu stud surface structure. We found the growth rate of IMC layer increased with the increasing of Cu stud grain size and surface roughness during aging test. The growth kinetics of Cu-Sn intermetallic compound formation for 63Sn/37Pb solder followed the Arrhenius equation with activation energy varied from 0.78 eV to 1.14 eV. The ratios of Cu/sub 3/Sn layer thickness to the total Cu-Sn IMC layer thickness was in the range of 0.5 to 0.15 for various Cu microstructures at 150/spl deg/C during thermal aging test. The shear strength of solder bump was measured after thermal aging and temperature/humidity tests. The relationship between electroplating process and reliability of solder joints was established. The failure mode of solder joints was also analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.