Abstract

Spark plasma sintering was used to fabricate Cu/TiO2� x composites by adding Cu powder to nonstoichiometric titanium dioxide, TiO2� x. The composition and crystal forms of the composites were examined. The thermoelectric properties of the composites were measured and the effects of composite formation on these properties were discussed. The rule of mixture (ROM) of composite and general effective medium theory (GEM) were used to investigate the composite effects of the Cu/TiO2 � x composites. The results revealed that the electrical resistivities of the composites was much lower than that of TiO2 � x. As the added amount of Cu powder increased, the electrical properties of the composites shifted from semiconductor behavior to metallic behavior. The thermoelectric performances of the composites improved as a result of composition formation. The thermoelectric performance can be improved by adjusting the balance among electrical resistivity, thermal conductivity and the Seebeck coefficient, based on the composite effects. & 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.