Abstract

Abstract As-cast Mg−6Zn−xCu−0.6Zr (x=0, 0.5, 1.0, wt.%) alloys were fabricated by permanent mold casting; then, the alloys were subjected to homogenization heat treatment and extrusion−shearing (ES) process. The microstructure and mechanical properties of the alloys were evaluated by OM, SEM/EDS, XRD, TEM, EBSD and tensile tests. The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation (PSN) effect and hinder the migration of dynamic recrystallization (DRX) grain boundary at an elevated temperature during ES. The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination (UTS of 396 MPa, YS of 313 MPa, and δ=20.3%) owing to strong grain boundary strengthening and improvement of Schmid factor for {0001} basal slip. The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.