Abstract

For H‖ c-axis, the magnetic field induced broadening of the resistive transitions of high- T c superconductors (HTS) is shown to depend strongly on the Cu-O layer spacing. For the highly anisotropic HTS, we show experimental evidence that flux motion results from a thermally activated crossover from three dimensional (3D) vortex lines to 2D independent pancake-like vortices in the Cu-O layers, which is intrinsic to the material and occurs when k B T exceeds the Josephson coupling energy of these layers. At low temperatures, however, thermally activated conventional depinning (which can be sample dependent) or melting in the uncoupled 2D Cu-O layers is also required for flux motion. For YBa 2Cu 3O 7, this dimensional crossover does not occur below H c2, presumably because the conducting Cu-O chains short-circuit the Josephson interlayer coupling, leading to better superconducting properties in a magnetic field. These results show that strong interlayer coupling is a key to finding good alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.