Abstract

The role of grain orientation and grain boundary misorientation on the formation of subcritical grain boundary cracks in creep of a conventionally cast nickel-based superalloy has been studied. The crystallographic orientations of the grains adjacent to grain boundaries normal to the tensile axis were measured using electron backscattered diffraction. The difference in the Schmid factor for the {111} <112> slip system between the grains was compared to the occurrence of grain boundary cracking. In addition, the difference in the amount of potential primary creep was calculated. The cracked grain boundaries were found to have a larger difference in Schmid factor, as well as a larger difference in potential primary creep, compared with uncracked grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.