Abstract
In order to investigate the influence of material anisotropy in ductile cutting of Potassium Dihydrogen Phosphate (KDP) crystals, experiments of face cutting of (001) plane of KDP crystals are carried out by using an ultra-precision lathe with a single point diamond tool. The cutting forces, surface finish, and surface roughness in all crystallographic orientations of the machined surface are measured, and a power spectrum analysis method is used to reveal the cutting force patterns. The experimental results show that the cutting forces and surface roughness vary greatly with different crystallographic orientations of KDP crystal, and that amplitude variation of cutting forces and surface finish is closely related with the cutting parameter of the maximum undeformed chip thickness. With the maximum undeformed chip thickness below 30 nm, the amplitude variation of cutting force and surface finish is minimized, and a super-smooth surface with consistent surface finish in all the crystallographic orientations can be achieved. The surface roughness is 2.698 nm (Ra) measured by Atomic Force Microscope (AFM). These findings provide criteria for achieving a large-scale KDP crystal with consistent super-smooth surface using ductile cutting technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.