Abstract

The effects of crystalline fields on magnetic-form factors are discussed on the basis of recent Hartree-Fock calculations of Watson augmented by an analysis of experimental optical absorption data. It is shown that the crystalline field has two effects on the free ion 3d wave functions and hence on their form factors as well:(1) a differentiation or “splitting” of the two types of cubic 3d functions by an expansion of the t2g (or eg)orbital and a contraction of the eg (or t2g) orbital resulting in two different radial charge densities and (2) a net expansion of the charge distribution from the free ion value. The magnetic-form factor due to this“splitting” effect when calculated according to the methods of Weiss and Freeman shows measurable deviations from the free atom results. A form factor for Mn+2 based on optical absorption data shows a large expansion of the 3d charge density, in agreement with the measurements of Hastings, Elliott, and Corliss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.