Abstract

Hydrothermal method is widely used in the synthesis of perovskite-type oxides, whereas few studies are reported for the nucleation mechanism, so that the relationship between the crystal structures and reactive activities of reactants and products is still unknown. Herein, the reaction processes are analyzed on the basis of XRD, SEM and Raman characterizations, and the nucleation mechanism is investigated for the hydrothermal synthesis of MZrO3 (M = Ba, Sr, Ca). We propose that the negative charged cyclic tetramer complexes [Zr4(OH)8(OH)16]8- form in the hydrothermal reaction, which play major roles in the nucleation process. The tetramer complexes continually dehydrate and condensate to form substructural units composed of alkali-earth ions and 6-fold Zr tetramers; substructural units further dehydrate and distort to form perovskite structures. The reactive activation energy increases with the decreasing of M2+ (M = Ba, Sr, Ca) ionic radius because the incorporation of smaller A site ions in the perovskite structure is accompanied by greater rotation and distortion of the ZrO6 octahedra, leading to the decrease of reactive activity accordingly. In a word, the proposed nucleation mechanism in this paper is of great significance for the study of perovskite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call