Abstract

AbstractTwo kinds of reduced sensitivity high explosive 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane (RS‐HMX) with different particle sizes were selected to enhance the energy output and the mechanical properties of insensitive high explosive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB). Mechanical sensitivities, dynamic mechanical analysis, and non‐linear time dependent creep behaviors of TATB/HMX composites were investigated and discussed in relation to the structural characteristics. Compared with TATB/conventional HMX (C‐HMX) sample, both the impact and friction sensitivities of TATB/RS‐HMX were reduced. It revealed that TATB/fine grains RS‐HMX composites had the highest storage modulus and minimum steady‐state creep strain rate due to the increased coherence strength and the inhibited slide of the single layer of TATB crystal. The creep resistance also showed clear dependence on the particle size of RS‐HMX. The overall results indicated that RS‐HMX had good potential in high energetic, safe, and load‐bearing material applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.